skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacLeod, Morgan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a new predictive theory for the analysis of common envelope (CE) events that incorporates the effects of relevant hydrodynamical processes into a simple analytical framework. We introduce the ejection and dynamical parametersξandβ, which define whether envelope ejection is energetically or hydrodynamically favorable, respectively, during CE inspiral. When combined, these parameters offer a detailed narrative of how inspiral begins, proceeds, and ends that is consistent with preliminary comparisons to 3D hydrodynamical models. This physically motivated framework impacts predictions for CE outcomes, especially for systems that have energy excess, and offers promise as a potential alternative for the treatment of CEs in binary population synthesis. 
    more » « less
  2. Abstract We examine a century of radial velocity, visual magnitude, and astrometric observations of the nearest red supergiant, Betelgeuse, in order to reexamine the century-old assertion that Betelgeuse might be a spectroscopic binary. These data reveal Betelgeuse varying stochastically over years and decades due to its boiling, convective envelope, periodically with a 5.78 yr long secondary period (LSP), and quasiperiodically from pulsations with periods of several hundred days. We show that the LSP is consistent between astrometric and radial velocity data sets, and argue that it indicates a low-mass companion to Betelgeuse, less than a solar mass, orbiting in a 2110 day period at a separation of just over twice Betelgeuse’s radius. The companion star would be nearly 20 times less massive and a million times fainter than Betelgeuse, with similar effective temperature, effectively hiding it in plain sight near one of the best-studied stars in the night sky. The astrometric data favor an edge-on binary with orbital plane aligned with Betelgeuse’s measured spin axis. Tidal spin–orbit interaction drains angular momentum from the orbit and spins up Betelgeuse, explaining the spin–orbit alignment and Betelgeuse’s anomalously rapid spin. In the future, the orbit will decay until the companion is swallowed by Betelgeuse in the next 10,000 yr. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  3. Abstract Triple stellar systems allow us to study stellar processes that cannot be attained in binary stars. The evolutionary phases in which the stellar members undergo mass exchanges can alter the hierarchical layout of these systems. Yet, the lack of a self-consistent treatment of common-envelope (CE) in triple-star systems hinders the comprehensive understanding of their long-term fate. This paper examines the conditions predicted around binaries embedded within CEs using local 3D hydrodynamical simulations. We explore varying the initial binary separation, the flow Mach number, and the background stellar density gradients as informed by a wide array of CE conditions, including those invoked to explain the formation of the triple system hosting PSR J0337+1715. We find that the stellar density gradient governs the gaseous drag force, which determines the final configuration of the embedded binary. We observe a comparable net drag force on the center of mass but an overall reduction in the accretion rate of the binary compared to the single-object case. We find that, for most CE conditions, and in contrast to the uniform background density case, the binary orbital separation increases with time, softening the binary and preventing it from subsequently merging. We conclude that binaries spiraling within CEs become more vulnerable to disruption by tidal interactions. This can have profound implications on the final outcomes of triple-star systems. 
    more » « less
  4. Abstract The evolution of many close binary and multiple star systems is defined by phases of mass exchange and interaction. As these systems evolve into contact, tidal dissipation is not always sufficient to bring them into circular, synchronous orbits. In these cases, encounters of increasing strength occur while the orbit remains eccentric. This paper focuses on the outcomes of close tidal passages in eccentric orbits. Close eccentric passages excite dynamical oscillations about the stars’ equilibrium configurations. These tidal oscillations arise from the transfer of orbital energy into oscillation mode energy. When these oscillations reach sufficient amplitude, they break near the stellar surface. The surface wave-breaking layer forms a shock-heated atmosphere that surrounds the object. The continuing oscillations in the star’s interior launch shocks that dissipate into the atmosphere, damping the tidal oscillations. We show that the rapid, nonlinear dissipation associated with the wave breaking of fundamental oscillation modes therefore comes with coupled mass loss to the wave-breaking atmosphere. The mass ratio is an important characteristic that defines the relative importance of mass loss and energy dissipation and therefore determines the fate of systems evolving under the influence of nonlinear dissipation. The outcome can be rapid tidal circularization (q≪ 1) or runaway mass exchange (q≫ 1). 
    more » « less
  5. ABSTRACT We analyse how drag forces modify the orbits of objects moving through extended gaseous distributions. We consider how hydrodynamic (surface area) drag forces and dynamical friction (gravitational) drag forces drive the evolution of orbital eccentricity. While hydrodynamic drag forces cause eccentric orbits to become more circular, dynamical friction drag can cause orbits to become more eccentric. We develop a semi-analytic model that accurately predicts these changes by comparing the total work and torque applied to the orbit at periapse and apoapse. We use a toy model of a radial power-law density profile, ρ ∝ r−γ, to determine that there is a critical γ = 3 power index, which separates the eccentricity evolution in dynamical friction: orbits become more eccentric for γ < 3 and circularize for γ > 3. We apply these findings to the infall of a Jupiter-like planet into the envelope of its host star. The hydrostatic envelopes of stars are defined by steep density gradients near the limb and shallower gradients in the interior. Under the influence of gaseous dynamical friction, an infalling object’s orbit will first decrease in eccentricity and then increase. The critical separation that delineates these regimes is predicted by the local density slope and is linearly dependent on polytropic index. More broadly, our findings indicate that binary systems may routinely emerge from common envelope phases with non-zero eccentricities that were excited by the dynamical friction forces that drove their orbital tightening. 
    more » « less
  6. We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries enter into a common envelope phase or merger, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of Luminous Red Novae (LRNe) to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead in to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that approximately half of stellar merger and common envelope transients for solar-mass stars will be dusty, infrared-luminous sources. The dusty, infrared transients will selectively trace the population of systems that may successfully eject their common envelopes, while the unobscured, optical transients correspond to the LRNe population of stellar mergers. 
    more » « less
  7. The detection of the binary black hole merger GW190521, with primary mass 85+21−14 M⊙ , proved the existence of black holes in the theoretically predicted pair-instability gap ( ∼60−120M⊙ ) of their mass spectrum. Some recent studies suggest that such massive black holes could be produced by the collision of an evolved star with a carbon-oxygen core and a main sequence star. Such a post-coalescence star could end its life avoiding the pair-instability regime and with a direct collapse of its very massive envelope. It is still not clear, however, how the collision shapes the structure of the newly produced star and how much mass is actually lost in the impact. We investigated this issue by means of hydrodynamical simulations with the smoothed particle hydrodynamics code StarSmasher, finding that a head-on collision can remove up to 12% of the initial mass of the colliding stars. This is a non-negligible percentage of the initial mass and could affect the further evolution of the stellar remnant, particularly in terms of the final mass of a possibly forming black hole. We also found that the main sequence star can plunge down to the outer boundary of the carbon-oxygen core of the primary, changing the inner chemical composition of the remnant. The collision expels the outer layers of the primary, leaving a remnant with an helium-enriched envelope (reaching He fractions of about 0.4 at the surface). These more complex abundance profiles can be directly used in stellar evolution simulations of the collision product. 
    more » « less
  8. Abstract Atmospheric escape from close-in exoplanets is thought to be crucial in shaping observed planetary populations. Recently, significant progress has been made in observing this process in action through excess absorption in-transit spectra and narrowband light curves. We model the escape of initially homogeneous planetary winds interacting with a stellar wind. The ram pressure balance of the two winds governs this interaction. When the impingement of the stellar wind on the planetary outflow is mild or moderate, the planetary outflow expands nearly spherically through its sonic surface before forming a shocked boundary layer. When the confinement is strong, the planetary outflow is redirected into a cometary tail before it expands to its sonic radius. The resultant transmission spectra at the He 1083 nm line are accurately represented by a 1D spherical wind solution in cases of mild to moderate stellar wind interaction. In cases of strong stellar wind interaction, the degree of absorption is enhanced and the cometary tail leads to an extended egress from transit. The crucial features of the wind–wind interaction are, therefore, encapsulated in the light curve of He 1083 nm equivalent width as a function of time. The possibility of extended He 1083 nm absorption well beyond the optical transit carries important implications for planning out-of-transit observations that serve as a baseline for in-transit data. 
    more » « less
  9. Abstract Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter. 
    more » « less
  10. Long-baseline monitoring of the HAT-P-32Ab system reveals helium escaping through tidal tails 50 times the size of the planet. 
    more » « less